
How many geospatial practi-
tioners do you know who
work at computer terminals
every day but would say of
themselves “I'm not really

much of a hardware person”? Given
hardware's confusing acronyms, intimi-
dating complexity, and fast-paced evolu-
tion, it's easy to understand why so
many of us take that stance. There are
two increasingly good reasons, however,
for developers of interactive mapping
Web sites to become more confident
about hardware. These include the
decreasing costs of both servers and
colocation. In this column, I’ll consider
the benefits of owning and colocating a
Web server, then I’ll describe how each
hardware component of a server con-
tributes to a processing task. With these
relationships in mind, we can all think
more like “hardware people” when con-
figuring or upgrading our hardware for
optimal spatial application performance.

Carrots and Sticks
Currently, the best reason to administer
your own online presence is the ever-
lower price of hardware and ISP (Internet
service provider) colocation fees. Com-
puters powerful enough to serve interac-

tive browser-based maps to an entire
municipality now cost as little as $500.
And colocating your new server at an
ISP's facility costs $300 or less per
month. So, for a $50 initial investment,
a $30 monthly charge, some free open-
source GIS software, and copious spare
time for skills development, ten starving
GIS grad students can share a Linux box
and host their ten different interactive
mapping projects online. And if trends
continue, these already minimal costs
will continue to drop as hardware,
speed, capacity, and power increase.

Of course, there are other ways to get
an interactive Web-mapping site online
without buying your own hardware and
colocating it. In addition to offering colo-
cation, some companies (such as Metrop-
olis New Media in San Jose, California),
will configure a server with GIS software
then rent subdivisions of its space to mul-
tiple customers. The problem is that rent-
ing space on someone else’s hardware
means you no longer have full control of
your data and application code. Other
users sharing the space on the same server
may tie up its resources in unexpected
ways. Still worse, someone else — the
800-pound gorilla otherwise known as
the system administrator — can lock you
out, browse through your directories,
copy your data, and do anything you
can do . . . and more. Data simply isn't
secure if you don’t control the box that
houses it.

Inside a Spatial Web Server
Determined to take control of my appli-
cations and data, I asked colleagues for
their spatial-specific hardware recom-
mendations. They confirmed that spatial
processing requires special hardware con-
figuration. For instance, spatial database
expert and open-source advocate Paul
Ramsey of Refractions Research, Inc.,
shared the following general hardware
rules for a spatial Web server:

GIS mapping is a data-reading exer-
cise firstly and a rendering exercise
secondly. Fast disks and a fast front-
side bus can help you get data off of
the media and onto your map very
fast. RAID (Redundant Array of
Independent Disks) 10 on fast-spin-
ning disks is the fastest redundant
option. Extra memory helps your
operating system cache frequently used
data off of the media. Fast CPU will
speed your render.
There’s a universe of knowledge be-

tween Ramsey’s concise overview and
the details of each hardware component
and their interrelationships (see Figure 1).
What are the key components of a typical
server, and how do they work together?
To better understand Ramsey's guide-
lines, we’ll consider a day in the life of a
spatial Web server at the internal hard-
ware components level. This imaginary
server's job is to provide interactive
municipal maps of assessor's parcels
and underlying aerial imagery to the
general (Internet) public.

Inside Spatial Server
Hardware

Net Results

Jonathan W. Lowe

Net Results columnist Jonathan W.
Lowe covers the role of emerging
technologies in the exchange of
spatial information. Lowe is the
owner of Local Knowledge
Consulting (Berkeley, California),

where he designs and implements spatial Web sites.
He can be contacted at info@giswebsite.com.

Demystifying the hardware components that comprise
geo-enabled Web servers — and learning how to own
one yourself — isn’t as daunting as you might think.

40 Geospatial Solutions September 2004 www.geospatial-online.com

For starters, imagine an anonymous
public user scrutinizing a mapping Web
page displayed on his local browser. The
page consists simply of a JPEG map
image and navigation tools. Our curious
user selects a zoom-in navigation tool
and mouse-clicks on the map image.
Whoosh! The user's browser sends his
(form-driven) zoom request to our spatial
Web server as an HTTP (hypertext trans-
fer protocol) “get” request, initiating our
day in the life.

Buses and Ports. On the receiving end,
the Internet map-zoom request appears at
our spatial Web server’s Ethernet port
(item A in Figure 2). The term port is
hardware jargon for a shared linear path-
way connecting two devices with a bidi-
rectional communication channel. The
more general term for such a connection
(implying three or more devices) is bus.

Chipset. So, what devices does the Eth-
ernet port connect? On one side of our
server’s Ethernet port is the vast territory
of the Internet. On the other side, waiting
to catch incoming data, is a device called
the chipset (item B in Figure 2). If our
server were a factory, the chipset would
be its foreman, providing intelligence,
coordination, and operational oversight

to key hardware elements. For instance,
the chipset arbitrates data transfers
between the processor, memory, and
other components — all of which may be
operating at widely different speeds.
Through clever direction, the chipset

reduces wait times between slower and
faster components.

Processor. Upon reception, the chipset
passes the map-zoom request to the
server's processor, also known as the cen-
tral processing unit, or CPU (item C in
Figure 2). The processor is the piece of
hardware that performs calculations to
produce a result in answer to a demand.
The map-zoom request contains both a
complicated demand (“Draw a map of
extent X and size Y, containing layers A
and B”) and an implicit or explicit set of
rules to follow when responding to that
demand (“Determine the drawing steps
using Web-server software such as
Apache.”) Eager to start work, the
processor asks the chipset for access to
those rules so it can begin evaluating the
demand.

Storage Media. Rules are essentially lists
of instructions (for example, programs)
that are stored in files. When the proces-
sor requests instructions, the chipset has
three likely places to find them, each a
different storage medium: very fast cache,
moderately fast memory (RAM, item D
in Figure 2), or relatively slow hard disk

www.geospatial-online.com September 2004 Geospatial Solutions 41

Figure 2. This logical data and workflow diagram shows key hardware components and their connec-
tions: network adapter/port, chipset, processor, cache and memory, hard drives, memory bus, data bus,
and disk bus.

Figure 1. A motherboard is to a computer what a chassis is to a car — the integration area for all sub-
components and their connections. This image of a Tyan Thunder K8S (S2880) motherboard annotates the
locations, names, and (sometimes) throughputs of key hardware elements, but doesn’t reveal their rela-
tionships to each other. Specification sheets give more detail about each part, but also count on the reader
to know how the parts work together.

(item E in Figure 2). The processor can
accept and execute instructions very
quickly. Consequently, the ideal storage
medium supports equally fast reads and
writes. Unfortunately, the fastest storage
media are also the most expensive, so our
spatial Web server has a very small
amount of expensive cache (L1 and L2),
a larger amount of less expensive mem-
ory (main memory), and finally, the
affordable but slow hard-disk storage.

In our story, the processor's request for
the Apache Web server's instruction set
becomes one of many conflicting requests
that the chipset must juggle with maxi-
mum speed and efficiency. The chipset
must find and copy data-of-the-moment
between slow and fast storage media. In
practice, this means that the chipset first
searches the cache for Apache instruc-
tions. If they're not already there, the
chipset searches main memory, and then
it searches the hard disks. As soon as it
finds the instructions, the chipset dis-
places whatever was in the cache and
puts some subset of the Apache instruc-

tions there instead, putting any remain-
ing instructions into main memory. Once
the instructions are in fast memory, they
remain there and can be used repeatedly
until displaced when some other pro-
gram runs, or when the server is shut
down.

With the instructions it needs in main
memory, the processor can begin execut-
ing them consecutively. To transfer
chunks of instructions between itself and
memory, the processor uses a bus called
the memory bus, (item F in Figure 2), or
frontside bus, a three-way connection
between processor, chipset, and memory
with its own maximum speed and
throughput.

Eventually, the processor discovers
that Apache's is not the only instruction
set that satisfies the map-zoom request.
Still needed are vector and raster data
from a database (Ramsey's “data-reading
exercise”), as well as a program that ren-
ders these data as a graphic map (Ram-
sey's “rendering exercise”). As before,
the chipset seeks out and transfers these

additional programs’ instructions to
memory, and the processor crunches
onward.

Some of the instructions tell the
processor to request data from the local
spatial database and copy it to main
memory. In this case, data flow between
the hard disks and main memory along
both a data bus (item G in Figure 2) and
a disk bus (item H in Figure 2). When the
processor finishes consolidating these
data in main memory, it requests access
to another program to render those data
as a graphic map. Ideally, the rendering
program instructs the processor to draw
the map directly to fast main memory —
or even to cache — rather than to a file
on the (slow) hard drive. Once again, the
processor and memory exchange data
across the frontside bus to produce a
graphic map image.

After the rendering is complete,
Apache resumes control, sending the new
image and surrounding navigation tools
from main memory back to the chipset,
then to the Ethernet port, and, finally,
back to the browser of the public user.
The sun sets on our day in the life of a
spatial Web server.

Balance and Bottlenecks
Practitioners who do consider themselves
hardware people have similar processing
flows in mind when building or upgrad-
ing spatial computers. Starting with an
understanding of their spatial processing
needs, they then step through a day in
the life such as we did, noting the
throughput of each hardware component
(see Figure 3). They confirm that overall
throughput on all devices and their con-
necting buses are as balanced as possible.
One slow component in an otherwise
fast mix will create a performance bottle-
neck. For instance, because every request
must eventually pass between the proces-
sor and main memory to be executed,
relatively slow memory bus throughput
can limit performance of almost every
task the system attempts. Thus, hard-
ware people typically begin by checking
frontside bus speed when conducting

Net Results

42 Geospatial Solutions September 2004 www.geospatial-online.com

Facing the 800-Pound Gorilla
Does the idea of a system administrator taking over your Web site sound like a paranoid delu-
sion? Consider this cautionary tale: In the May 2003 Net Results column, I reviewed a spatial
hosting company called pgHoster and noted that such a shockingly inexpensive spatial Web-
hosting option looked almost too good to be true. Heeding my own advice, I opened an
account with pgHoster. Unfortunately, later in my experience as one of their customers,
pgHoster's offering did turn out to be too good to be true. Access to my domain was unreli-
able, especially on weekends, and my support requests often went unanswered. For the low
rate of $10 per month, though, temporary loss of service wasn't bad enough to turn me away
— I designed my research to work around a maximum of three days without data collection.

Then in July 2004, following an attack by a cracker, the entire pgHoster site (and all
domains it hosted) was compromised and taken completely offline for more than three
consecutive weeks, ruining my research project. After partially recovering, pgHoster offered
to restart the GIS databases if customers were willing to pay 150 percent more than the origi-
nally established rate. Meanwhile, I could not access my data or alter any files in my account.
If not for my own backups, I would have had no room to negotiate.

Admittedly, administering an online spatial database hosting service is no small challenge,
and pgHoster's staff likely meant well. But the bumps were finally too rough for me. To any
readers who also selected pgHoster based on my then-positive review, please accept my hum-
ble apologies. The pgHoster idea remains as valuable as ever, but practical execution of that
idea remains incomplete.

Combined with the low price of hardware and colocation, plus the scarcity of online
spatial database hosts, this experience was my turning point to acquire and colocate the
entire package myself.

throughput analysis.
Furthermore, to keep us all on our

toes, the potential bottleneck areas
change as different components leapfrog
forward in performance, turning previ-
ous leaders into laggards. For instance,
today's Ethernet ports typically transfer
data at a speed of 250 MB per second,
but they are already making way for Eth-
ernet replacements capable of moving
2.5 GB per second. Frontside-bus speeds
used to hit a throughput ceiling of 1 GB
per second. But with a new hypertrans-
port technology, they can theoretically
exceed 4 GB per second.

Revisiting Ramsey
This column's purpose was to demystify
the relationships between the key hard-
ware components of a spatial Web server
to better understand where bottlenecks
occur and how to mitigate them. Did the
column succeed? With hardware balance
and our example in mind, let's re-exam-
ine some of Ramsey's spatial hardware
rules.

� Fast disks and a fast frontside bus
can help you get data off of the media
and onto your map very fast — This
makes sense. The flow from raw data to
rendered map begins with the hard disk,
moves to main memory via the disk and
data buses, and then relies on the proces-
sor to quickly (via its frontside bus con-
nection to main memory) grab and ren-
der that data. Different hard disks spin at
different speeds, the fastest being the
most expensive to purchase. The faster a
disk spins, the less time it takes the cylin-
der to revolve to where the actuator arm
and its head are over the sector of the
disk that contains the data that the
processor wants. As for the frontside bus,
even if fast disks speed data transfer
between disk and main memory, there
will be a systemwide delay if exchanges
between main memory and the processor
are slow.

Bringing disk throughput (such as with
the RAID approach, described below)
almost as high as frontside bus through-
put will maximize this data-to-map flow.

� RAID 10 on fast-spinning disks is
the fastest redundant option — In almost
all cases, the slowest component of the
mix will be the hard disks. Today's
fastest-spinning disks (15,000 RPM) sup-
port throughput between 55 and 85 MB
per second, far slower than the typical
processor, main memory, or frontside
bus. Spreading the data across a RAID,
however, allows the chipset to access all
disks at the same time, bringing the total
throughput of an array of 10 55 MB-per-
second disks to 550 MB per second.

There are several popular RAID strate-
gies (RAID 0, 1, 5, and 10) for distribut-
ing data across these disk arrays, such
that no data is lost even if one or more of
the disks crash and overall disk through-
put is balanced in comparison with other
devices in the system.

� Extra memory helps your operating
system cache frequently used data off of
the media — A spatial Web server may
repeat the same kind of actions, such as
rendering maps, many times in a row
before getting any other demands.

When this happens, the instructions

and data stored in cache and main mem-
ory from the previous demand are
already in place for fast access on conse-
quent similar processing. The larger the
main memory and cache, the more of
these repeatable instructions or reusable
data are directly accessible without a
slow trip to the hard disk and back.

Hands On
During my junior and senior years as an
undergraduate geologist, I had to unlearn
and relearn everything I had picked up as
a freshman and sophomore. The simplifi-
cations needed to initially grasp concepts
supplied the context for discovery of
more subtle details and shades of gray
later on. Having a general mental map
of the inner workings of your computer
is the first step. Configuring, purchasing,
and experimenting with real hardware is
the next and will doubtless change your
original frame of reference. Best of luck
getting the most performance for your
investment and learning from direct
experience! �

Net Results

www.geospatial-online.com September 2004 Geospatial Solutions 43

Figure 3. A logical data and workflow diagram with maximum throughput values (data per second) for
each component and bus reveals the bottlenecks, if any, between them. Imagine flowing water in a pipe
network instead of electronic data in circuitry. Where in this system would the water pool because of
bottlenecks?

