
2 Geospatial Solutions September 2001 www.geospat ia l -on l ine .com

ardware
bravado bat-
tles—we’ve all
witnessed at

least one. They begin
with a casual mention of
CPU speed, RAM cache,
or hard disk size. “Dude,
you could smell the
smoke from my two 800
MHz processors when I
rendered every street in
the country in 20 sec-
onds!” It’s a challenge;
will any listener dignify
this meaningless com-
ment with a response?
Hopefully not, but if

another macho device-lover over-
hears, he’ll be unable to resist reply-
ing, “Oh yeah? Well my server’s 2 GB
of RAM could’ve done it in half the
time by caching the whole dataset!”
With two bloated tech-egos now
mutually invested, the exchange could
drag on for hours.

Annoying or fun as a macho hard-
ware debate may be, its pivotal topic
— system performance — remains as
important as ever in the delivery of
information from a computer system
to a human being. In the spatial data
industry, computers deliver informa-
tion as graphic maps or images; both

H

NetResults
The Performance Art of
Spatial Mechanics
Jonathan W. Lowe

are extremely dense data formats. In
other words, it’s possible to pack
more information onto the fixed area
of a computer display using a map
image than using plain text. The cost
of high-density information, though,
is large datasets and slow perform-
ance. The more data in storage, the
more to sift through to deliver what
users need.

Despite the fact that computer
hardware is always getting faster,
datasets are simultaneously getting
larger to feed people’s ever-growing
appetite for sophisticated informa-
tion. No matter how the technology
improves, performance tuning skills
will remain valuable when managing
large geospatial datasets,
especially when the deliv-
ery mechanism is the Inter-
net. This column explains
some of the issues involved
in tuning a spatial system
for optimal performance.
If you haven’t yet had to
solve a data performance
problem in the course of
your spatial career, stick around; it
will come.

Bravado’s basis
The pseudo-religious zeal that flavors
macho discussions about system per-
formance stems in part from our very
human tendency to talk the loudest
when we know the least and are
afraid our peers will discover our
ignorance. Human frailty isn’t the
only culprit, though. True perform-
ance tuning begins as a complex art
and only appears to be a science in
retrospect. This art requires its practi-
tioner to synthesize not only hardware
components, but data structures and
application design. Any complex art

has plenty of room for debate even
over simple problems, and the art of
performance-tuning is no exception.

“An art?” you may ask, “but this is
engineering, not watercolor paint-
ing!” But consider the nonlinear rela-
tionship between the number of CPUs
and a system’s performance. Upgrad-
ing your computer from one to two
CPUs does not automatically double
the performance speed of spatial
applications. In fact, it may even
degrade performance! Anyone who
implies that his or her fast, large, or
expensive hardware components are
the sole source of a system’s fast per-
formance is unwittingly broadcasting
his or her ignorance of the real issue:

speed comes only
after varying the
configuration of
hardware compo-
nents, the data stor-
age strategy, and the
application code,
followed by
repeated testing,
searches for bottle-

necks, more testing, more changes,
and so on, until all the pieces work
together. Speed can’t just be bought; it
must be coaxed out of the system by a
crafty, patient, artful mechanic.

Coaxing performance
The process of coaxing an optimal
performance from a large spatial
application involves balancing hard-
ware quality, I/O channels, data struc-
ture and storage, and query optimiza-
tion. Hardware quality is the easiest
to understand and yet the most often
misunderstood. Certainly, faster CPUs
and more RAM can speed up process-
ing, but that’s only part of the picture.
The way the mechanic configures a

This column

covers the

role of

emerging

technologies

in the

exchange

of spatial

information.

Glossary
CPU: central processing
unit

I/O: input/output

RAM: random access
memory

H

Net Results
columnist
Jonathan W.
Lowe is the
owner of Local
Knowledge
Consulting
(Berkeley,

California), where he designs
and implements spatial Web
sites. Lowe can be contacted at
info@giswebsite.com.

NetResults

www.geospat ia l -on l ine .com Geospatial Solutions September 2001 3

system to move information as the
application runs, from hard drive to
RAM to CPU to display and so on,
can markedly influence an applica-
tion’s speed. Along the same lines, the
mechanic’s choices about how and
where to store the spatial data will
affect speed. Further complicating the
tuning process, there are many ways
to ask a computer for the same piece
of information. Careful design of the
order in which an application re-
trieves data can accelerate its
response. Finally, lurking in the back-
ground of each of these aspects of the
design process is the bottom line —
money. In general, the fastest possible
solutions usually carry the greatest
expense, especially when data security
is also important. As intimidating as
messing around with low-level hard-
ware can be at first, the concepts that
spatial mechanics use are straightfor-
ward and simple. It’s their synthesis
that’s the art. A few examples should
illustrate the relative simplicity of a
performance-tuner’s portfolio of
strategies.

Divide and conquer slow disk I/O
Spatial applications respond to peo-
ples’ requests for data. Zooming or
panning a map window causes the
application to search for the subset of
map data within the extent chosen. In
most spatial implementations, that
map’s data is stored on a hard drive.
Too bad all the data can’t be stored in
RAM, where retrieval times are infini-
tesimal compared with disk access
times. But even on really macho
machines with several gigabytes of
RAM, there’s usually too much data,
so it must be semi-permanently stored
on a hard disk. The slowest process
for a hard disk is seeking; that is,
moving the mechanical access arm to
the track on the spinning cylinder that
holds the data. Seek time depends on
the speed of the disk and the location
of the disk arm when the operation
starts, and varies from zero to nearly a
full second. One second may not
sound like much, but what if every
street segment in a map of your neigh-
borhood took a second to seek on
disk? A neighborhood rendering

ther, what if the two elevators in our
30-story building both went to all
floors? The same two people could
still get to their destinations uninter-
rupted by taking separate elevators.
This is the most costly elevator design,
requiring complete duplication of all
elevator features on all floors, but it is
also the most versatile and flexible if
one elevator goes out of service. The
parallel in a computing environment
is called a mirrored drive array or a
redundant array of inexpensive drives.
The mirroring strategy copies an
entire dataset to two (or more) hard
disks, but reads data from alternate
clusters on both (or all) disks, cutting
retrieval times by half for two drives,
by two thirds for three drives, and so
on. If a drive fails, the complete copy
is still available on any of the other
mirrored drives. Handy, but expen-
sive.

Even with the best elevator design,
our imaginary building might have a
problem if there was only one narrow
entry door to the lobby. In the morn-
ing, this single access point will be
mobbed with people trying to get in.
Better have several doors or a very
wide single door. Similarly, multiple
daisy-chained hard drives all connect-
ing to the same computer through a
single small computer systems inter-
face port will underperform the same
hard drives each connected to the
CPU by separate ports.

Speed versus space?
“Disk is cheap,” mutter the spatial
mechanics, as they build indexes on
large datasets. They’re reassuring
themselves about a dilemma they face
for every spatial dataset — namely, to
sacrifice storage space by building an
index or allow performance to suffer?

Indexes are presorted lists describ-
ing columns of records in spatial
datasets. Like an indexe in the back of
a book, they speed up retreival time
by preventing a complete scan of the
entire dataset for every search request,
but (like book indexes) they take up
space. Without indexes, a mechanic
has to find a way to speed up a com-
plete data scan — upgrading the CPU
speed is one alternative. Because buy-

would take a while.
Spatial performance-tuners mini-

mize seek time by loading the most
popular subset of the data onto the
middle of the hard drive cylinders.
Then, no matter where the disk arm is
at the moment of the data request, it
will seldom have to travel more than
halfway across the disk (at most) to
get popular data. For spatial applica-
tions, this might mean loading the
rural areas on the inner and outer
rings of the cylinders and the urban
ones in the middle.

Going up?
If two or more applications require
access to the same hard disk simulta-
neously, I/O requests can be delayed, a
situation called contention. The sim-
ple strategy for avoiding disk con-
tention is to divide the data based on
its probable use and spread the differ-
ent divisions across separate hard
disks and I/O channels.

This approach is similar to the
design of elevators in tall office build-
ings. In a building with 30 stories,
one elevator may service the first fif-
teen floors, and another, floors 16
through 30. Then, when two people
arrive at the elevator bay at the same
time, one going to the 14th floor and
the other to the 20th, they can both
ride their own elevator to their own
floor directly. If one elevator existed
to service all floors (a cheaper solution
to build), the person going to the 20th
floor would have to wait while the
elevator first stopped at the 14th floor.
Disk stripping. The analogy is the same
with a strategy called disk striping in
which divided datasets reside on sev-
eral drives. If the system can access
each disk independently, then two
requests for different parts of the same
large dataset can be retrieved simulta-
neously without disk contention. In a
dataset in the United States, this
would mean storing eastern states on
one disk, midwestern states on
another, and western states on a third.
(As with the elevator example, buying
and configuring an array of individual
disks will probably cost more than
buying one larger disk.)

Mirroring. Taking the analogy fur-

NetResults

4 Geospatial Solutions September 2001 www.geospat ia l -on l ine .com

ing extra disks costs less than buying
more or faster CPUs, indexes are a
wise choice financially, and are easy
enough to build. As with base data,
the “elevator” strategies also apply. If
a big dataset resides on one disk and
its index resides on a different disk,
then disk contention and seek time
can both be eliminated or reduced —
one disk arm reads the index and
another reads the data, neither arm
moving much between seeks. A
dataset with its index on the same
cylinder forces its disk’s arm to jump
back and forth from index to data
with each new seek, slowing down the
response time. Also, like striping and
mirroring of raw data, indexes can be
intentionally divided and spread
across multiple disks, a strategy called
index fragmentation.

Too many cooks? Delegate courses
Suppose the budget is infinitely large,
allowing for both extra disk space and
more CPUs? Plunk several new CPUs
into the system and, voila!, huge gains
in performance, right? Maybe not.
Performance might even get worse.
But if a faster CPU means faster pro-
cessing, why don’t more CPUs also
mean faster processing? In fact, multi-
ple CPUs can process faster than sin-
gle CPUs, but only if there are simul-
taneous multiple tasks to be pro-
cessed. In other words, when a system
gets a request for data, only one of its
CPUs accepts responsibility for
responding. Except on custom sys-
tems designed for very specific tasks,
it’s too difficult to break apart a single
request, send its parts to separate
CPUs, and then weave each CPU’s
response back together again at the
end. Instead, gains from multiple
CPUs start to appear when the system
handles multiple simultaneous
requests, a common scenario for an
Internet server.

On a single-processor machine, for
example, two requests for maps could
arrive at once. The solitary CPU can
only do one thing at a time, so if each
request (or thread) requires one sec-
ond to complete, it will take no less
than two seconds to respond to both
requests. A dual-processor machine in

prior to being compared against each
other. For example, imagine a U.S.
census application that lets users ask
for the number of homes worth more
than a given dollar value in tracts
within a certain population density
range. The attribute-only census data
contains records of home value and
population. The spatial tract data
contains records of tract area. Neither
dataset has precalculated values for
population per tract area. The popula-
tion density, then, must be calculated
on-the-fly — a big time sink.

Although the users select their own
settings for population density and
home value, the application designer
decides how to execute the search,
which involves four parts — calculat-
ing population density, filtering by
population density, filtering by home
value, and counting. Will the query’s
order of execution influence the
retrieval speed? Absolutely.

One of the tricks of query opti-
mization is to narrow the selection set
as early as possible in the search
sequence. That way, subsequent steps
involve a smaller dataset and hence a
shorter seek time. In the census appli-
cation, when a user requests the num-
ber of homes worth more than $1 mil-
lion in tracts with population densities
less than 2,000 people per square
mile, a clever query would first elimi-
nate tracts with home values less than
$1 million. (Hopefully, the home
value records are indexed and so will
be almost instantaneously filtered.)
Now the query process can join this
small subset of census records to the
tract dataset and perform the time-
expensive, on-the-fly density calcula-
tion, its filter, and then the count. If
the query was designed to first join,
calculate, and filter by population
density, then the system would need-
lessly crunch through every value in
both tables for every user request.

There are times when even an opti-
mized query just isn’t fast enough. In
this census example, it may be worth
adding a permanent new set of
records for population density and
indexing them. The extra space
required for the new records and their
index could be costly, but justified by

the same two-thread situation could
finish both requests in only one sec-
ond. The first CPU handles thread-1
in a second, and, simultaneously, the
second CPU handles thread-2 in a sec-
ond. At least, that’s the lofty theory. In
reality, things are not quite so cut-
and-dried.

Multiprocessor machines include
the overhead of managing all their
processors, an ongoing task that
requires threads (and a processor) of
its own. At some point, the gains of
multiple CPUs outweigh the loss due
to overhead; multiprocessor systems
are best suited to multiuser environ-
ments.

Not just how many, but how
No matter what the system’s size or
the project’s budget, there’s always a
place for the design of the data and
the cleverness of the query. Duplicat-
ing the same spatial theme in different
formats is one clever trick for speed-
ing up retrieval and display. For
instance, if the freeway theme includes
on- and off-ramps that can only be
seen below 1:50,000 scale, store a sec-
ond copy of the freeway data that
does not include the ramps, and use
this smaller dataset when drawing the
freeways at scales greater than
1:50,000. Similarly, the accuracy of
the freeway lines may be critical at
scales below 1:24,000, but impossible
to even recognize when zoomed out
any farther. Storing a generalized copy
of the freeways that drops every other
verticy or even every other node of
each freeway segment will dramati-
cally reduce the copy’s size and speed
up its rendering time. At scales above
1:24,000, the generalization will be
undetectable if done properly. (Of
course, storing copies of data requires
more disk space, and so incurs an
expense.)

Query optimization. Data designs like
these speed up the responses to spatial
questions. It’s also possible to tinker
with the questions themselves and,
though the answers may be the same,
to improve response times even more.
The art of query optimization relies
on smart decisions about the order in
which related datasets are filtered

NetResults

www.geospat ia l -on l ine .com Geospatial Solutions September 2001 5

the increase in user satisfaction when
the answers come back more quickly.

The dove is in the details
When people get into car accidents,
they often say, “He hit me,” rather
than “His car hit my car.” Our cars
become extensions of our bodies
when we drive, both physically and
psychologically. We don’t “become
one” with our computers like we do
with cars, but some hardcore techies
subconsciously equate the power of
their systems with their own personal
competence as human beings. No
wonder the hardware bravado battles
get so heated.

Next time you’re caught in the
crossfire of a verbal hardware volley,
do your part to restore peace to the
world of spatial computing with some
healing performance art. In response
to the comment, “Dude, you could
smell the smoke from my two 800
MHz processors when I rendered
every street in the country in 20 sec-
onds!” just say, “Oh cool, man, so,
did you normalize the spatial and
attribute values into separate rela-
tional tables in the database? Or did
you decide to stripe the data across
three spindles with a fourth independ-
ently connected disk capturing log
entries, or just mirror the whole
thing? Were you using a fragmented
index? Did you limit the display at a
countrywide scale to rampless free-
ways only, or duplicate and thin them
with a generalization? See, I’m just a
newbie at this performance-tuning
stuff, so I want to learn from pros like
you.”

Mystified by your refinement, the
macho squadron may suddenly recall
other meetings they ought to be
attending and pause the warfare until
another day. Maybe they’ll reengage
after they’ve tried performance-tuning
for themselves. If so, what they gain in
expertise and experience may begin to
release them from the urge to connect
their value as people with the power
of their hardware devices. Organiza-
tional (human) performance-tuning
will always demand more sophistica-
tion than any artful tinkering with a
computer system ever could. We peo-

ple are so darned complicated. Hope-
fully our machines will always agree,
free of bravado, to perform ever faster
at the artful coaxing of a well-
intentioned spatial mechanic. c

NetResults

